Problem 1.29

Calculate the line integral of the function $\mathbf{v}=x^{2} \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+y^{2} \hat{\mathbf{z}}$ from the origin to the point $(1,1,1)$ by three different routes:
(a) $(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1)$.
(b) $(0,0,0) \rightarrow(0,0,1) \rightarrow(0,1,1) \rightarrow(1,1,1)$.
(c) The direct straight line.
(d) What is the line integral around the closed loop that goes out along path (a) and back along path (b)?

Solution

Part (a)
Use the fact that the integral is a linear operator to split it up over the line segments of the path.

$$
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}=\int_{\langle 0,0,0\rangle}^{\langle 1,0,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,0,0\rangle}^{\langle 1,1,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,1,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}
$$

Along the first line segment, the variation is solely over x while $y=0$ and $z=0$; along the second line segment, the variation is solely over y while $x=1$ and $z=0$; and along the third line segment, the variation is solely over z while $x=1$ and $y=1$.

$$
\begin{aligned}
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l} & =\left.\int_{0}^{1} v_{x}\right|_{\substack{y=0 \\
z=0}} d x+\left.\int_{0}^{1} v_{y}\right|_{\substack{x=1 \\
z=0}} d y+\left.\int_{0}^{1} v_{z}\right|_{\substack{x=1 \\
y=1}} d z \\
& =\int_{0}^{1} x^{2} d x+\int_{0}^{1} 2 y(0) d y+\int_{0}^{1}(1)^{2} d z \\
& =\frac{1}{3}+0+1 \\
& =\frac{4}{3}
\end{aligned}
$$

Part (b)

Use the fact that the integral is a linear operator to split it up over the line segments of the path.

$$
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}=\int_{\langle 0,0,0\rangle}^{\langle 0,0,1\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 0,0,1\rangle}^{\langle 0,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 0,1,1\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}
$$

Along the first line segment, the variation is solely over z while $x=0$ and $y=0$; along the second line segment, the variation is solely over y while $x=0$ and $z=1$; and along the third line segment, the variation is solely over x while $y=1$ and $z=1$.

$$
\begin{aligned}
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l} & =\left.\int_{0}^{1} v_{z}\right|_{\substack{x=0 \\
y=0}} d z+\left.\int_{0}^{1} v_{y}\right|_{\substack{x=0 \\
z=1}} d y+\left.\int_{0}^{1} v_{x}\right|_{\substack{y=1 \\
z=1}} d x \\
& =\int_{0}^{1}(0)^{2} d z+\int_{0}^{1} 2 y(1) d y+\int_{0}^{1} x^{2} d x \\
& =0+1+\frac{1}{3} \\
& =\frac{4}{3}
\end{aligned}
$$

Part (c)

In order to do the line integral over the straight line from $\langle 0,0,0\rangle$ to $\langle 1,1,1\rangle$, parameterize this line: $\mathbf{l}(t)=\langle t, t, t\rangle$, where $0 \leq t \leq 1$.

$$
\begin{aligned}
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l} & =\int_{0}^{1} \mathbf{v}(\mathbf{l}(t)) \cdot \mathbf{l}^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle t^{2}, 2 t^{2}, t^{2}\right\rangle \cdot\langle 1,1,1\rangle d t \\
& =\int_{0}^{1}\left(t^{2}+2 t^{2}+t^{2}\right) d t \\
& =4 \int_{0}^{1} t^{2} d t \\
& =\frac{4}{3}
\end{aligned}
$$

Note that it doesn't matter what path is taken from $\langle 0,0,0\rangle$ to $\langle 1,1,1\rangle$. The line integral will always yield $4 / 3$ because \mathbf{v} is conservative:

$$
\begin{aligned}
\nabla \times \mathbf{v}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} & 2 y z & y^{2}
\end{array}\right| & =\hat{\mathbf{x}}\left[\frac{\partial}{\partial y}\left(y^{2}\right)-\frac{\partial}{\partial z}(2 y z)\right]-\hat{\mathbf{y}}\left[\frac{\partial}{\partial x}\left(y^{2}\right)-\frac{\partial}{\partial z}\left(x^{2}\right)\right]+\hat{\mathbf{z}}\left[\frac{\partial}{\partial x}(2 y z)-\frac{\partial}{\partial y}\left(x^{2}\right)\right] \\
& =\hat{\mathbf{x}}(2 y-2 y)-\hat{\mathbf{y}}(0-0)+\hat{\mathbf{z}}(0-0) \\
& =\mathbf{0} .
\end{aligned}
$$

$\underline{\text { Part (d) }}$

The line integral around the closed loop that goes out along path (a) and back along path (b) is

$$
\begin{aligned}
\oint \mathbf{v} \cdot d \mathbf{l} & =\int_{\langle 0,0,0\rangle}^{\langle 1,0,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,0,0\rangle}^{\langle 1,1,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,1,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,1,1\rangle}^{\langle 0,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 0,1,1\rangle}^{\langle 0,0,1\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 0,0,1\rangle}^{\langle 0,0,0\rangle} \mathbf{v} \cdot d \mathbf{l} \\
& =\int_{\langle 0,0,0\rangle}^{\langle 1,0,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,0,0\rangle}^{\langle 1,1,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,1,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}-\int_{\langle 0,1,1\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}-\int_{\langle 0,0,1\rangle}^{\langle 0,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}-\int_{\langle 0,0,0\rangle}^{\langle 0,0,1\rangle} \mathbf{v} \cdot d \mathbf{l} \\
& =\left(\int_{\langle 0,0,0\rangle}^{\langle 1,0,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,0,0\rangle}^{\langle 1,1,0\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 1,1,0\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}\right)-\left(\int_{\langle 0,0,0\rangle}^{\langle 0,0,1\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 0,0,1\rangle}^{\langle 0,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}+\int_{\langle 0,1,1\rangle}^{\langle 1,1,1\rangle} \mathbf{v} \cdot d \mathbf{l}\right) \\
& =\left(\frac{4}{3}\right)-\left(\frac{4}{3}\right) \\
& =0 .
\end{aligned}
$$

